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Quadrupole Induced Resonant Particle
Transport in a Pure Electron Plasma

E. P. Gilson* and J. Fajanst

*Plasma Physics Laboratory, Princeton University, Princeton, New Jerse'; 08543
'Deparinent of Physics, University of California, Berkeley; California, 94720

Abstract. We performed experiments that explore the effects of a quadrupole magnetic field on a
pure electron plasma confined in a Malinberg-Penning trap. This work is important both as an ex-
ample of resonant particle transport and for antihydrogen (R). The R experiments plan to use mag-
netic quadrupole neutral atom traps to confine R atoms created in double-well positron/antiproton
Malmberg-Penning traps. Our results show that a quadrupole field of only 0.020 G/cm can cause
significant transport when applied to a I cm radius plasma confined by an axial field of 100 G. Our
model describes the shape of the plasma and shows that resonant electrons follow trajectories that
take them on large radial excursions, leading to enhanced transport. If the electrons are off reso-
nance, then diffusion will not be greatly enhanced. The measured diffusion scales like the square
of the quadrupole field strength, inversely like the square of the axial magnetic field and, below
resonance, like the square of the E x B rotation frequency. The location of the resonance in param-
eter space scales accordingly as we vary the length and temperature of the plasma. However, the
temperature used in fitting the data differs from the independently measured temperature by a factor
of four, suggesting that our description of the effect as purely diffusive is not correct.

INTRODUCTION

Antihydrogen (R) experiments at CERN by the ATHENA [1] and ATRAP [2] collabo-
rations need to trap antihydrogen, antiprotons and electrons in the same place. How-
ever, neutral atom traps with magnetic field gradients may not be compatible with
Malmberg-Penning traps because magnetic field gradients break the cylindrical symme-
try of Malmberg-Penning traps, degrading their confinement properties. This asynmme-
try induced transport may prevent the use of Malmberg-Penning traps in/ experiments.
Beyond its immediate importance to / research, this phenomenon is also of interest
in the general plasma community. It is relevant both in the study of resonant particle
transport in Malmberg-Penning traps [3, 4, 5, 6, 7, 8] and in tandem mirror machines
[9, 10, 11, 12, 13).

We have applied an axially invariant, transverse, quadrupole magnetic field to a pure
electron plasma confined in a Malmberg-Penning trap and observed its effects on the
shape of the plasma and on transport. We find that the shape of the plasma follows the
surface of a magnetic flux tube if the bulk rotation of the plasma is slow compared to the
axial bounce time of the electrons. The plasma shape is cylindrical if the bulk rotation
of the plasma is fast compared to the axial bounce time. Measurements of the radial
transport show a strong resonant behavior that is not in complete agreement with our
model of the effect, but is consistent with many of the predicted scalings. We expect that
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this transport will make it difficult to confine antiprotons and positrons long enough to
create R atoms.

EXPERIMENT

We apply a transverse, axially invariant, quadrupole magnetic field to a Malmberg-
Penning trap using two different sets of coils. We can apply a transverse quadrupole
field at any angle, 0, by adjusting the relative current in each coil. The total magnetic
field is then

B -= B2-2- P1 (x - y) + P•2 (y+4),(1)

where P3 = P + V2 is the strength of the quadrupole field in G/cm and tan(20o)

031/P32. In our experiment, the axial field ranges from 40 - 1500 G, while 3 < 1.0 G/cm
for the coils we constructed. Even though these quadrupole fields are weak compared
to B, at a typical plasma radius of 1 cm, we find that they produce strong transport.
Figure 1 shows that a flux tube that is circular at z = 0 is elliptical at either end, but with
the ellipses rotated by 90' with respect to one another.

FIGURE 1. The lines with arrows show the field lines produced by adding a small, transverse,
quadrupole field with e0 = 0 to a strong axial field. A flux tube that is circular at z = 0 is elliptical as you
move away from z = 0. The transverse cross sections show the field lines for the transverse quadrupole
field alone.

The quadrupole field has four-fold symmetry and so there exists a resonance condi-
tion,

NnO)tb = --•' (2)
(2

for which an electron rotates about the trap axis by Nir/2 radians as it travels across
the length of the trap. The rotation frequency about the trap axis is given by the E x B
frequency, (o, and the bounce time is given by tb = L/v,. We show below that the N = I
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resonance is the most important resonance and so we say that if otb >» 7t/2, the electron
is above resonance and if Otb, < 7t/2, the electron is below resonance.

We measure the effects of the quadrupole field using both the wall of the trap and
a phosphor coated glass substrate. We use the trap wall to detect the image charge
on a confinement gate that is divided into four azimuthal sectors of 900 extent. This
allows us to measure the quadrupole moment of the plasma at the axial location of the
gate. The phosphor collects the dumped plasma, producing an image whose brightness
is proportional to the z-integrated plasma density, n(rO). We extract radial transport
quantities from these plasma images.

PLASMA SHAPE

The quadrupole field changes the trajectories of the electrons and thus changes the shape
of the plasma. With transport present, the plasma's density and shape change with time.
If the characteristic transport time is greater than the other time scales in the system,
then we can imagine that the plasma exists in a quasi-equilibrium state at any instant in
time. It is the shape of the quasi-equilibrium plasma that we are interested in.

Measures of the plasma's shape are the ellipticity, e, and the orientation angle, Op. The
ellipticity is the RMS length of the plasma cross section divided by the RMS width, and
0P is the angle that the major axis of the ellipse makes with the x axis. We can measure
, and 0p either directly from the plasma images or from the signal induced on the wall
of the trap as measured by the four-sectored gate. The signal that we use to measure the
quadrupole moment is the combination (VI + V3 ) - (V2 + V4) e< E - 1, where Vi are the
voltages induced on the wall sectors.

We expect that when oTtz <« I (where the 0verbar denotes some suitable average value
for the plasma as a whole), the electrons largely follow the field lines in Figure 1. The
plasma has the shape of a magnetic flux tube. We expect that when o~ti >» 1, the radial
oscillations average out and the plasma is cylindrical. The data in Figure 2, derived fr'om
plasma images, show that the plasma changes from elliptical at small d (large Bz) to
cylindrical at large ýitil (small Bz). At large Bz, 0,p z 0, = -45' and gradually changes to
0, + 900 at small Bz. This rotation away from 0, at low B, is likely due to the effects of
the radial component of the imaging field we use. At lower Bz, the imaging field creates
a larger E x B rotation. Lastly, we see that by scaling out a factor of P, the data for
various n/Bz coincide. Thus, F - I at a given Bz is proportional to 3.

Using the wall sectors, we explore the z dependence of the below-resonance (Ui-t << 1)
plasma shape. We measure P at the end of several plasmas with different lengths at fixed
P and we find that E - I at the end of the plasma is proportional to L. We measure E at
the middle, left end, and right end of a plasma and the data in Figure 3 demonstrate that
E - I is equal and opposite at +z, and is 0 at z = 0. Further, c - I is also proportional to
P. Unfortunately, it is not possible to verify the axial invariance of the above-resonance
(i5ti >> 1) plasma in our experiment because we cannot simultaneously move the four-
sectored gate around and be in the above-resonance regime.
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FIGURE 2. Varying Bz changes co and thus -i0-b. E(Bz) - I approaches zero at low B, (large otb) and is
proportional to 3. 0 p P 0, = -45' at large B. and the change in Op(Bz) is likely due to imaging fields.

TRANSPORT

We envision the effect of the quadrupole field to be a diffusion process. The quadrupole
field causes electrons to have trajectories with radial excursions. The smallest collisions,
however, can knock electrons from one trajectory to another. We study transport using a
simplified model in which we can find the electron trajectories analytically. We estimate
the step size, X, from these trajectories, postulate a collision frequency, v, and form a
diffusion coefficient, D = X2 vf, where f is the fraction of electrons participating in the
diffusion.

We can guess what the trajectories look like by considering several examples. Figure 4
shows that a resonant electron (oth = iT/2) that starts at 450 below the x axis is on field
lines with radial components directed radially outwards as it bounces back and forth
across the trap. This resonant electron moves to a larger radial position than it started at.
For N > 1, N odd, there are the higher order resonances with smaller radial excursions.
For N even, the radial displacements cancel. For other initial angles and other values of
0)1t,, the trajectories may move inwards or oscillate radially.

If the guiding center of an electron follows a magnetic field line, then

dr _ Prv, cos [20(t)] (3)
dt B,
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FIGURE 3. Placing the pickup gate at different axial positions (z = 0, ± 10,3 cm) allows us to measure
the relative ellipticity at the left, middle, and right of the plasma. We see that the signal in the center
of the plasma vanishes, while the signal is equal and opposite at the ends of the plasma. The signal is
proportional to 3.

Because frequent collisions will disturb the electrons before they can go very far, we
estimate the step size to be X = r(v-1) - r0 .

X ;:z ( 4o• )L (4)
BzN2,t2v)

where we have assumed that 0(t) = Ot - 7t/4 and that we can replace vz with 2OL/NIt
by virtue of the resonance condition in Eq. (2).

Since electrons that are not exactly resonant also contribute to the transport, we must
calculate the width of the resonance. For a given vz, there is a resonant rotation frequency
(oR and we define the width of the resonance, Ao, through the relationship, 0o = (Ok + AO.
To determine Aw, we note that the solution of Eq. (3) depends on AmO through its
dependence on 0(t) = (Ot + 0, = ((OR + A0)t + 0,. Since the solution to Eq. (3) is an
oscillatory function, we choose Aw so that t = v-I corresponds to the first maximum of
r(t). This is equivalent to requiring that the extra angle of rotation, AO = AO/v, before
a collision should be no greater than 7r/4.
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FIGURE 4. An electron that begins 450 below the x axis and rotates by 900 as it travels the length of
the trap is resonant and moves ever outwards.

We construct the diffusion coefficient by writing f = Vm/27tkTexp(-v2/2V2h)AVz,
where Vth = V/k-T/m. Since the resonant electron has 0o = (N/t/2)(vz/L), we can write
Aw/0o = Avz/vz, or Avz = Lv/2N. Putting this all together gives

D 8r 2 8 3 I 2  2 (
DN = r m---exp - ) (5)

where "h E NltVth/2L. Summing over odd N gives the total diffusion. However, the
factor of N- 5 implies that the diffusion is dominated by the N = 1 resonance.

We may describe the resonant behavior of DN(0) qualitatively. Above resonance, the
plasma is rotating relatively quickly, and so for an electron to be resonant it must have a
relatively large v,. But the Maxwellian distribution ensures that there are few electrons
moving very fast and so the diffusion is suppressed. Below resonance, there are plenty
of resonant electrons in the thermal distribution, but now the step size is small and again,
diffusion is suppressed.

The scaling of D with 32 and the cancellation of the collision frequency, v, are
typical of diffusion in the so-called "plateau" regime. DN(03) has a maximum, Dmax,
at Ores = x/2th. Therefore, Dmax scales like 0 2 exp(-w02 /2o0)I2es • 0)2 This makes

the overall L scaling of Dmax L3 2h c L, and the overall kT scaling o2/ x/i cv

When C3 < "h (below resonance), the exponential term is close to unity and can be
ignored. In this regime, D c< (3ro 00/Bz) 2L3 . Since o c I/Bz, D scales like L3/Bz, in
contrast to the usual L2 /B2 that is attributed to resonant particle transport [4]. But, if
P3/B, is constant, as would be the case if the quadrupole field perturbation came from
asymmetries in the solenoidal magnet, the scaling is L3 /B.2

To measure D from n(r, t), we manipulate the diffusion equation to give,

D= dN/dt
27trodn/drlr=jo0 ' (6)
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where N(t) = fo"n(r,t)27trdr. We measure the slope dn/dr from a single image with
n(r) = 2,f6 n(rO)dO. The 6-averaging is acceptable because the quadrupole fields
used for transport measurements are small enough that the plasma shape is cylindrical,
even for the below-resonance plasmas. We image plasmas held for different times to
measure the time dependence of n(rt). We choose a radius, r, calculate N(t) and
compute dN/dM. The choice of t is arbitrary since we do not expect transport to have
an explicit time dependence and we choose t by some auxiliary condition, for example
to have ow(r,) be constant across a data set.

We measure D(3 1, 0 2) for many 0o, Bz, L, and kT. Figure 5 shows a typical plot of
D versus the transverse quadrupole field. We find that the minimum diffusion does not
occur at zero perturbation. This is evidence that we are correcting for naturally occurring
field errors by applying a quadrupole field. The surfaces D(0 1, P2) allow us to verify the
p2 scaling predicted by the model. We find that, over parameters available to us ranging
from =o 8.0 x 105 rad s-1 to 3.0 x 106 rad s- D scales like p2.

D (cm 2s-')

0S3

/ 7 O__ P, (Glarn)

1Oo (G/cm)(e"

FIGURE 5. Diffusion from the application of a quadrupole field. This data is taken at B. = 100 G,
r, = 0.95 cm, and (o = 2.0 x 106 rad s-. We choose values of P, and P2 in a checkerboard pattern and
the data (solid dots) show that there is an optimal quadrupole field and that diffusion increases away from
this optimal value.

We investigate the 0) dependence of the phenomenon by measuring the average D at a
distance of P = 0.020 G/cm from the minimum of the D( 1 , 1P2) surface. This averaging
over 0, dominates statistical uncertainty in D of approximately 7%. Figure 6 shows
DB2(6)) for several Bz, L = 28 cm, r, = 0.95 cm, and kT = 1.6 eV. The data show that the
quadrupole field enhances diffusion resonantly in 0). As 0o increases from 105 rad s-1,
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FIGURE 6. DB• shows a strong resonance in co. There is an explicit B2-2 dependence and for small o]
the diffusion scales like o2. The theory fit agrees best with the data if we use a multiplicative factor of 0.3
and an artificially low temperature of 0.34 eV. The independently measured temperature is 1.6 eV.

the diffusion grows. But above 0 2 x 106 rad s- t the diffusion decreases again. We
observe that there is an explicit Bzj2 scaling, since the data for various Bz in Figure 6
overlap. Our formula for D scales like o2 at small co and a least squares fit to the data
withco < .3 x106 rads-1 gives an exponent of 2.05±+0.09.

To be a bounce resonant effect, the peak in co should shift as we vary L and kT. We
repeat the measurements of D as a function of co as in Figure 6 for plasmas with smaller
L. Figure 7 shows that the peak moves to larger 03 as L decreases, although the exact
dependence on L is difficult to obtain from these data. We find that Dmax decreases as
L decreases. To test the temperature dependence, we heated the plasma for 1 ms by
applying a noise signal to the wall of the trap after injecting the plasma. Although the
resonance moves to larger co, we observe that Drnax decreases as kT increases. Our model
predicts that Drmax should increase as kT increases.

Figure 6 includes a curve representing our model with terms up to N = 10. The theory
curve shows moderate agreement with the data if we use an overall multiplicative factor
of about 0.3, and set kT to be 0.34 eV. A multiplicative factor of order unity might be
expected given the rough nature of our calculation. However, independent measurements
of kT give kT = 1.6 eV and this discrepancy is more serious and remains unexplained.
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FIGURE 7. The value of 0O,,s decreases as L increases. Excluding the shortest plasma, the data are
marginally consistent with a line with slope -I (solid line).

We find that is difficult to test the radial dependence of the diffusion. Clean measure-
ments are possible only in a small neighborhood near r z 1 cm. This trouble comes from
the noise in the measurements of dn/dr at extreme radii and the measurements of dN/dt
at large radii. At large and small radii, dn/dr z 0 and is therefore susceptible to statisti-
cal and numerical noise. At large radii, dN/dt ; 0. In either case, D • (dN/dt)/(dn/dr)
is poorly behaved.

CONCLUSIONS

We have applied an axially invariant, transverse quadrupole field to a pure electron
plasma confined in a Malmberg-Penning trap and observed the effects the quadrupole
field has on the shape of the plasma and on transport within the plasma. The quadrupole
field distorts the parallel magnetic field lines into flux tubes with elliptical cross sections.
Whether the E x B rotation is faster or slower than the bounce time determines the
properties of both the plasma shape and the amount of transport.

If the plasma rotates quickly, we observe the plasma to smear out into a cylinder. If the
plasma rotates slowly, we observe that the plasma has the shape of a flux tube, circular in
the center and elliptical on each end but with the ellipses rotated by 90' with respect to
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one another. The ellipticity is proportional to both the quadrupole field and to the length
of the plasma.

The transport created in the plasma by the quadrupole field exhibits a strong resonance
in (o. We observe diffusion coefficients of order 1 cm 2 /s at resonance for a perturbation
of only 0.020 G/cm. This is a weak field compared to those necessary for the confine-
ment of antihydrogen. The field is comparable to what one expects as possible natural
quadrupole errors in Malmberg-Penning traps.

By changing the length and temperature of the plasma and observing that the resonant
frequency changes accordingly, we have demonstrated that the transport is a bounce
resonant effect. The P3, (o, B, and L scalings are consistent with our simple model of the
effect, while the kT scaling of our model does not agree with the data. The r dependence
proves difficult to test. This disagreements between our model and our experimental
observations suggest that perhaps nonresonant particles make a significant contribution
to the transport, or perhaps that the transport is not purely diffusive. A model that directly
predicts the radial particle flux may better describe our experimental results.

A quadrupole field greatly enhances radial transport in a Malmberg-Penning trap
when the plasma is in resonance with the field. Therefore, the ATHENA and ATRAP col-
laborations will have difficulty using quadrupole fields in conjunction with Malmberg-
Penning traps to form antihydrogen. Typical experimental parameters will be B, = 2 T,
n - 108 cm- 3 and T - 4 K [14]. We estimate that OtbY 0.6, placing them near the
resonance. Even if operating off resonance, the magnitude of the quadrupole field will
be strong enough to severely limit confinement times.
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